Юридический портал - Оlgis

Применения газового разряда. Т. Виды разряда Теория ионизации воздуха

Коронный разряд – это процесс ионизации воздуха вдоль провода под действием сильных электромагнитных полей.

Теория ионизации воздуха

Ионизацию воздуха заметили давно, но не сумели правильно истолковать. С появлением в середине XVIII века первых электростатических генераторов разряд стал обычным явлением. Даже успели попробовать на себе жестокое действие . Истинные опыты с электричеством начались после изобретения Вольтой гальванического источника энергии.

Первую в мире дугу получил в 1802 году русский учёный с запоминающейся фамилией Петров. Он предсказал возможность использования сего для целей освещения. Сильную досаду вызывает факт, что весь учёный мир обратил внимание на явление. И оказывалось ясно, куда в действительности течёт электрический ток. Ведь отрицательный угольный электрод заострялся под действием дуги, а на аноде образовывалась небольшая ямка. Учёный мир увидел в этом правоту Бенджамина Франклина: заряды наращивают отрицательный угольный стержень, будучи положительны. И лишь к началу XX века, когда опыты с катодными лучами дали первые результаты, стало понятно, что 100 лет назад совершена большая ошибка.

При горении дуги пять шестых светового потока даёт анод. Его температура в стандартных физических опытах составляет 4000 градусов Цельсия. Это на 1000 больше, нежели у катода, дающего 10% светового потока. Прочее берётся от дуги непосредственно, за счёт мерцания ионизированного газа. При столь высоких температурах начинают плавиться даже керамика и вольфрам. Сварку изобрели гораздо позже, с 80-х годов (XIX века) электрод угольный, позже Н.Г. Славянов предложить использовать металлический.

Опыт Павлова повторил Дэви, прочие дугой пока не занимались. С его подачи началось исследование разряда в среде газа. Обнаружены первые линейчатые спектры. Фарадей и Уитстон в 30-х годах изучали разряд в разреженных газах. Видя усердие англичан, иностранный инженер, принявший российское подданство, Якоби попробовал применить угольный стрежень для освещения улиц Санкт-Петербурга (1846 год). Но анод быстро выгорал, увеличивая искровой промежуток, и лампа гасла. Ситуацию решил Яблочков, это уже случилось через 30 лет, когда век угольных разрядников подходил к концу. Они находили применение в узких областях долгое время, к примеру, при освещении неба в период Второй мировой войны и отражения вражеских налётов.

Катушка Румкорфа (ориентировочно 1846 год) окончательно убедила людей, что высокое напряжение способно создать искру, а Никола Тесла показал, что при помощи экрана Фарадея даже простой смертный сумеет направлять молнии в нужном направлении. Языки пламени в ночном небе над башней Ворденклиф называют самым невероятным коронным разрядом в истории человечества, если не считать устроенного позднее великим изобретателем на крышах Нью-Йорка.

Схема возникновения коронного разряда

Точного определения коронного разряда в литературе не встречается. По простой причине нежелания авторов разбираться с темой и обилием дублирующейся информации, упускающей смысл из содержания. Определение коронного разряда, данное в начале, тоже нельзя назвать физически точным. Корректная трактовка большинством читателей не воспримется из-за наличия специфических особенностей. В физике принято прохождение тока через воздух делить на три участка, видных на графике:

  1. Первый подчиняется и прямой. Здесь протекание тока возможно за счёт внешней ионизации: пламенем, ультрафиолетом, радиоактивным или высокочастотным излучением. Первые два фактора уже были известны Вольте (до открытия «животного электричества» Гальвани), предлагавшему снимать статический заряд с резины электрофоруса лучами Солнца или свечой.
  2. Второй участок находится в области насыщения. Учёные говорят, что ток остаётся сравнительно постоянным, заряды при движении между электродами активно рекомбинируют. И при растущей разнице потенциалов ничего не меняется. Пока напряжение не достигнет третьего участка.
  3. При высокой разнице потенциалов начинается лавинообразный процесс ударной ионизации. Электроны обретают столь высокую скорость, что выбивают электроны из молекул газа. На этом участке ток быстро растёт с повышением разницы потенциалов, возможно возникновение электрической дуги.

Разряд, наблюдаемый визуально, называется искровым и возникает после начала второго роста кривой. Вначале присутствует тихий разряд, глазу не заметный. Его часто называют несамостоятельным, нужен внешний ионизирующий фактор, чтобы поддержать движение носителей. Понижение напряжения вызывает немедленную рекомбинацию всех носителей.

Искровой разряд отмечается при напряжениях, где возможна лавинообразная ионизация. Искры проскакивают с частотой от 400 Гц и выше, что сопровождается различимым шумом. Напряжение после каждого разряда падает, чем обусловлено наличие свободного интервала. Визуально искры сливаются в одну. Подвидами указанного типа ионизации считаются родственные разряды:

  • Кистевой разряд похож на ладонь сказочного скелета. Образуется между острием и заряженной поверхностью. Заметно на нейтрализаторах , изоляторах ЛЭП. Ионизация начинается со стороны острия, в этом месте напряжённость поля увеличена, заряды стекают в пространство, чем порождается лавинообразный процесс.
  • Коронный разряд вспыхивает между несколькими участками одного провода. Вызван ударной ионизацией воздуха. Своеобразные изломанные зубцы подобны молниям. Их причудливую траекторию учёные объясняют тем, что процесс ионизации распространяется по пути наименьшего сопротивления, в силу изотропности газа невозможно предсказать точный путь. Корона порой плавная и бывает положительной или отрицательной.

Коронный разряд ведёт к потере энергии на линии ЛЭП и происходит непрерывно, что различимо на слух как низкочастотный гул и треск. В дождливую погоду сопротивление провода падает, возможно появление языков ионизированного воздуха в виде маленьких молний, идущих вдоль провода или шаров. Коронный разряд используется в фильтрах очистки воздуха (ионизаторах, люстрах Чижевского), улавливая частицы дыма, пыли, заставляя их оседать.

Электрическая дуга

Сказанное выше не позволяет точно понять электрическую дугу. При определённом значении напряжения начинается ударная ионизация воздуха. Если разница потенциалов падает, ток не меняется либо растёт (см. и ). Это так называемый участок с отрицательным дифференциальным сопротивлением. Процесс, идущий между электродами, именуется дугой. Разряд разжигается высоким напряжением и сближением стержней, а затем идёт самостоятельно.

Известно, что сварщик стучит электродом по детали, чтобы начать ударную ионизацию. Потом электрод удаляется, а дуга остаётся, не гаснет. Напряжение тоже низкое. В этом заключается особенность дуги. Это объясняет, почему открытые линии ЛЭП не несут вольтаж выше 2 МВ. А дальше начинается коронный разряд, возникает дуга, чтобы потушить, приходится приложить немало усилий.

Тесла строил башню Ворденклиф, чтобы добиться передачи энергии посредством коронного разряда. Созданной дуге предписывалось лететь на приёмник, а оттуда излучаться дальше, вокруг всего Земного шара. По замыслу Теслы требовалось построить передатчики, ловившие языки молний. Безопасность обеспечивалась высокой частотой напряжения (радиодиапазон).

Суммируя, нужно заметить, что электрическая дуга по-иному называется самостоятельным разрядом, процесс может поддерживаться.

Механизмы ионизации

Коронный разряд образуется на геометрических изломах вследствие повышенной напряжённости поля в этой области. На указанном принципе работают нейтрализаторы и стекатели. Явления, наблюдаемые при газовом разряде, количественно описываются двумя коэффициентами Таунсенда:

  • Альфа: коэффициент объёмной ионизации. Численно это количество ионизаций, производимых электроном на дистанции 1 см.
  • Гамма: описывает процесс ионизации на границе катод-газ. Здесь электроны покидают поверхность и начинают шествие вдоль силовых линий поля. Равен отношению покидающих катод электронов к числу падающих сюда ионов за единицу времени.

Оба коэффициента растут вместе с разницей потенциалов. После несамостоятельного разряда отмечается лавинообразная ионизация с образованием меж электродами облака положительного заряда. Этот момент соотносится с возникновением короны. Дальнейшее повышение напряжения приводит к нарушению стационарности положительного облака, и ток начинает колебаться в районе конкретного значения.

Изложенное называется теорией Роговского и поясняет, где возникает корона, как образуется искрение. Все определяется полётом электронов и пространственным распределением заряда. Главный признак – не происходит короткого замыкания цепи при коронном разряде, как происходит при искрении (кратковременно) или дуге (постоянно).

Коэффициент альфа определяет удалённость свечения от электрода. Гамма скорее характеризует геометрическую форму поверхности и разницу потенциалов, приведшую к появлению разряда.

Особенности коронного разряда

Коронный разряд обычно возникает в месте с наименьшим радиусом кривизны. Если это линия, максимальная вероятность образования проявляется на механическом дефекте. Область наиболее частого возникновения заряда называется коронирующей, либо коронирующим электродом. Проводник – под положительным или отрицательным потенциалом. Соответственно, различают и короны аналогичного рода (см. выше).

Положительный и отрицательный разряд отличаются внешним видом. В первом случае свечение равномерное, во втором имеются эпицентры по поверхности провода. Механизм процесса меж электродами:

  1. В начале возникает несамостоятельный разряд. Это происходит за счёт случайного действия: капли дождя, порыв ветра и пр.
  2. Если разница потенциалов продолжит расти, образуется слабое свечение в районе провода, сопровождаемое еле слышным потрескиванием. Вызывающее напряжение называется критическим, либо начальным.
  3. При дальнейшем росте разницы потенциалов (напряжение искрового пробоя) ток растёт по квадратичному закону, свечение становится сильнее. Начинают проскакивать искры со всевозрастающей частотой.
  4. Тотальное увеличение разницы потенциалов вызывает дуговой разряд, проявляющийся как короткое замыкание цепи. Его горение сложно остановить.

Важно! Критическое и искровое напряжение отличаются для положительной и отрицательной короны.

Итак, коронный разряд в лабораторной установке является предшественником искрового, а искровой – дугового. На практике при номинальном напряжении сети электрики не слишком беспокоятся о защите. Возможно повысить вольтаж на 10% без особого ущерба, если в указанной местности не бывает частой непогоды, преимущественно песчаных бурь.

Если расстояние между электродами слишком мало, коронный разряд не образуется: после несамостоятельного немедленно идёт искровой. Провода в ЛЭП стараются разнести на дистанцию, применяют керамические изоляторы. Коронный разряд часто заменяется кистевым, если присутствует ярко выраженное острие. Оба лишь формальное обозначение идентичного явления.

При дальнейшем повышении напряжения от U з и выше сила тока резко начинает возрастать. Если убрать внешний ионизатор, разряд продолжится. Значит заряды, необходимые для поддержки электропроводимости газа, теперь создаются самим разрядом. Газовый разряд, который существует без действия внешнего ионизатора, называют самостоятельным разрядом. Напряжение U з, при котором разряд становится самостоятельным, называют напряжением зажигания газового разряда или напряжением пробоя. Самостоятельный газовый разряд поддерживается за счет ударной ионизации электронами, ускоренными электрическим полем. Под действием электрического поля скорость электронов возрастает настолько, что при соударении электрона с атомом, атом теряет электрон. При достаточной напряженности электрического поля оба электрона набирают до следующего столкновения энергию, достаточную для ионизации следующего атома. Число электронов растет очень быстро, говорят, образуются электронно-ионная лавина. Этого не достаточно, необходимо компенсировать электроны, ушедшие на анод. Эти электроны могут появиться из катода при бомбардировке катода положительными ионами и фотонами (при освещении катода), движущимися к катоду под действием электрического поля.

Типы самостоятельных разрядов:

а) Коронный разряд

возникает при атмосферном давлении в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности

б)Искровой разряд

возникает при большой напряженности электрического поля.

в) Дуговой разряд

Если после зажигания искрового разряда от мощного источника постепенно уменьшить расстояние между электродами, то разряд становится непрерывным- возникает дуговой разряд. При этом сила тока резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения, минуя стадию искры. Для этого электроды сближаются до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу (именно так она была открыта В.В. Петровым). При атмосферном давлении температура катода примерно 3900 К. Дуговой разряд поддерживается за счет высокой температуры катода из-за интенсивной термоэлектронной эмиссии, а также термической ионизации молекул, обусловленной высокой температурой газа. Дуговой разряд применяется для сварки и резки металлов, получения высококачественных сталей в дуговых печах, освещения (прожекторы).

г) Тлеющий разряд возникает при низких давлениях. Тлеющий разряд – это свечение газосветных трубок в надписях и рекламах, это лампы дневного света. Характер свечения зависит от химического состава газа в трубке и состава вещества, покрывающего внутреннюю поверхность трубки.

2. Естественная радиоактивность. Виды радиоактивных излучений и их свойства.

Явление радиоактивности подтверждает сложный состав атома. Радиоактивность заключается в том, что ядро некоторых химических элементов самопроизвольно, без действия внешних факторов создают невидимое излучение, которое обладает определенными свойствами. Радиоактивность открыл в 1896г. Анри Беккерель для урана. Невидимые лучи действовали на фотопластинку, ионизировали газ, имели высокую проникающую способность. Изучение радиоактивности (этот термин появился позднее) продолжили многие ученые. В 1898г. французские физики Мари Кюри и Пьер Кюри из отходов урановой руды получили два новых химических элемента. Сначала полоний (Ро), занявший 84 клетку в таблице Менделеева, а затем радий (Ra), занявший 88 клетку. Излучения радия было очень сильным, термин радиоактивность стал применяться после открытия радия. Кюри также выяснили, что все элементы, начиная с 83 в разной степени радиоактивны.

Э.Резерфорд, исследуя радиоактивное излучение, обнаружил его неоднородность. В магнитном и электрическом полях излучение делилось на три части. Компоненты излучения были названы: альфа –лучами (α), бета-лучами (ß), гамма-лучами (γ).

α- лучи слабо отклоняются в электрическом и магнитном полях как положительно заряженные частицы. Масса этих частиц в четыре раза превосходит массу атома водорода. Позднее было определено, α- лучи- это ядра атомов гелия. У α- лучей очень сильная ионизирующая способность, но проникающая способность слабая, т.е. это излучение хорошо поглощается веществом.

ß -лучи отклонялись в магнитном и электрическом поле противоположно α-лучам, но значительно сильнее, они представляют собой поток быстрых электронов. Проникающая способность ß -лучей значительно больше, чем у α- лучей, а ионизирующая много слабее.

γ -лучи не отклонялись в электрическом и магнитных полях, они оказались очень жестким электромагнитным излучением (электромагнитные волны очень малой длины, большой проникающей способностью). Обнаружить γ -лучи можно и после прохождения железной плиты метровой толщины.

Билет № 7

1. Электрический ток в полупроводниках. Собственная и примесная проводимость полупроводников.

Существует большая группа веществ, которые по своим электрическим свойствам занимают промежуточное положение между проводниками и диэлектриками. Эти вещества называют полупроводники. К ним относятся кремний, германий, фосфор, мышьяк, сурьма, селен, оксиды некоторых металлов, сульфиды, теллуриды.

От металлов полупроводники отличаются концентрацией свободных зарядов, в полупроводниках при нормальных условиях концентрация свободных электронов в миллиард раз меньше, чем в металлах. Поэтому удельное сопротивление полупроводников на несколько порядков выше, чем у металлов. Если при нагревании металла сопротивление проводника увеличивается, то при нагревании полупроводника сопротивление значительно уменьшается. Проводимость некоторых полупроводников значительно возрастает при их освещенности. Примеси в металлах значительно снижают их электропроводимость, примеси в полупроводниках могут повысить электропроводимость в отдельных случаях в десятки тысяч раз. Электропроводимость неметаллических кристаллов существенно зависит от давления, при давлении 3-4 атм. Она может стать равной проводимости металлических кристаллов.

Электропроводимость полупроводников объясняется особенностью их кристаллического строения. Рассмотрим кристаллическую решетку германия. Германий – типичный полупроводник (z=32). Четыре электронных оболочки германия содержат 32 электрона-2, 8, 18, 4. Три внутренних оболочки устойчивые, т. е. в химических реакциях не участвуют, их электроны имеют сильную связь со своим ядром. Во внешней оболочке атомов германия имеется 4 валентных электрона. При сближении данного атома с соседними валентные электроны соседних атомов взаимодействуют друг с другом. Каждый атом германия находится на одинаковом расстоянии от четырех соседних атомов и образует с ними ковалентные связи, т. е. такие связи, при которых каждый из валентных электронов принадлежит одновременно двум соседним атомам. Валентные электроны могут переходит из одной ковалентной связи в другую, перемещаться по всему кристаллу. Такое перемещение хаотичное, поэтому тока не создает.

Собственная проводимость полупроводников.

Энергия ионизации атомов германия сравнима с энергией теплового движения уже при комнатной температуре. Поэтому часть внешних электронов обобществляется соседними атомами и легко переходят от одного атома к другому, становясь блуждающими частицами (Электроны стали свободными). Число таких электронов значительно увеличивается при нагревании или освещении. Под действием электрического поля свободные электроны станут двигаться направленно и создадут электрический ток, называемый электронным током. Одновременно с появлением блуждающего (свободного) электрона у атома полупроводника возникает свободное место в ковалентной связи, которое принято называть дыркой . Эту дырку может занять электрон из ковалентной связи соседнего атома, у которого в свою очередь образуется дырка. Таким образом блуждание электронов в кристаллической решетке влечет за собой блуждание дырок.

« Перемещение» дырок от одного атома к другому подобно движению положительного заряда, т. е. дыркам приписывается положительный заряд. Под действием электрического поля « дырки» будут перемещаться в направлении, противоположном движению электронов, создавая дырочную проводимость. Ток в полупроводнике складывается из электронного и дырочного токов. В химически чистых полупроводниках электронный ток равен дырочному, а проводимость чистых полупроводников называют собственной.

Примесная проводимость полупроводников.

Проводимость полупроводников зависит не только от внешних условий, в частности от температуры и давления. Проводимость увеличивается при наличии специально подобранных примесей. Тогда наряду с собственной проводимостью возникает примесная проводимость. Обычно основным полупроводником являются германий или кремний.

Если к четырехвалентному кремнию в качестве примеси добавить пятивалентное вещество, например, мышьяк, то для образования ковалентной связи атомов кремния и мышьяка достаточно четырех валентных электронов от каждого атома. При этом пятый валентный электрон мышьяка оказывается свободным, т.е. электроном проводимости. Примесь, валентность которой больше валентности основного полупроводника, называется донорной (отдающей электрон). Полупроводники с донорной примесью называются полупроводниками n-типа. В полупроводниках – типа электронная проводимость преобладает над дырочной. Электроны называют основными носителями заряда, дырки-неосновными носителями.

Если к кремнию в качестве примеси добавить трехвалентное вещество, например, индий, то при образовании ковалентной связи атомов кремния и индия не будет хватать одного электрона. Поэтому на каждый атом индия образуется одна лишняя дырка Примесь, валентность которой меньше валентности основного полупроводника, называется акцепторной (принимаюшей). Полупроводники с акцепторной примесью называются полупроводниками р- типа. В полупроводниках р- типа дырочная проводимость преобладает над электронной. Дырки- основные носители заряда.

2. Ядерные превращения. Закон радиоактивного распада.

Радиоактивный распад- радиоактивное превращение атомных ядер, которое сопровождается появлением ядра другого химического элемента и выделением одной из элементарных частиц. Радиоактивный распад подчиняется правилу смещения .

При α-распаде получается ядро химического элемента, смещенного на две клетки к началу периодической системы, при этом массовое число убывает на четыре единицы.

Т.е. α-распад происходит по схеме

Например

ß -распад бывает двух разновидностей: электронный и позитронный. При ß- электронном распаде образуется ядро, расположенное на одну клетку правее исходного , например

При позитронном распаде (позитрон- античастица электрона, отличается от электрона только знаком заряда) образуется ядро химического элемента, смещенного на одну клетку к началу таблицы Менделеева , например

Распад ведет к уменьшению числа атомов радиоактивного вещества и носит случайный характер. Заранее нельзя предсказать какой из атомов и когда распадется.

До момента распада ни в ядре, ни в электронной оболочке атома никаких процессов, предопределяющих распад, не происходит. Поэтому можно говорить только о вероятности распада какого-либо атома за данный промежуток времени. Время T, в течение которого распадается половина первоначального количества радиоактивных атомов, называется периодом полураспада.

Закон радиоактивного распада является статистическим законом, он имеет вид:

N= N 0 ·2 - t/ T , где N 0 -начальное число радиоактивных ядер, N- число нераспавшихся ядер через время t от начала распада, T – период полураспада.

Периоды полураспада у радиоактивных элементов сильно различаются. Например, у урана-238 он равен 4,5·10 9 лет, у тория-234 он равен 24,1 дня, а у полония-214 составляет всего 1,5·10 -4 с.

Независимость периода полураспада радиоактивных элементов используется для определения возраста горной породы, в которой эти элементы содержатся (обычно для используют изотоп урана . Возраст органических соединений обычно определяют по содержанию углерода.

Билет № 8

1.Контакт двух полупроводников с разными типами проводимости. Его свойства и применение в электронных приборах.

Если привести в контакт два полупроводника с различными типами проводимости, то начнется встречное диффундирование электронов и дырок. Электроны проводимости из полупроводника n-типа будут переходить в полупроводник р-типа, а дырки из полупроводника р-типа в полупроводник n-типа. Поэтому процесс в контактном слое полупроводников разных типов называется р-n переходом или электронно-дырочным переходом. В результате встречного диффундирования электронов и дырок полупроводник n-типа получит положительный заряд, а полупроводник р- типа отрицательный. В контактном слое возникает электрическое поле (контактная разность потенциалов), препятствующее дальнейшей диффузии электронов и дырок.

Свойства электронно-дырочного перехода.

Если соединить полупроводник n-типа с отрицательным полюсом источника тока, а р- типа- с положительным полюсом, то электрическое поле источника скомпенсирует поле контактного слоя, и диффундирование электронов и дырок через контактный слой будет происходить непрерывно. Через контакт возникает электрический ток, называемый прямым током р-n перехода.

Если полупроводник n- типа соединить с положительным полюсом источника тока, а р- типа с отрицательным полюсом источника тока, то поле источника будет совпадать с полем контактного слоя. Сопротивление контактного слоя будет очень большим и ток через него практически не пойдет (слабый обратный ток р-n перехода создается неосновными носителями заряда).

Таким образом, контактный слой двух полупроводников различных типов обладает односторонней проводимостью.

Полупроводниковый прибор на основе одного р-n называют полупроводниковым диодом. Диод используется для выпрямления переменного тока.

Полупроводниковый прибор на основе двух р-n называют полупроводниковым триодом или транзистором. Транзисторы делятся на р-n-р и n –р-n. Средняя более узкая область транзистора называется базой, она делит кристалл на две области с одинаковой проводимостью, называемые эмиттер и коллектор. Транзисторы используются для получения и усиления электрических колебаний высокой частоты.

2. Строение атомного ядра. Энергия связи атомных ядер.

В 1919г Резерфорд, осуществляя первую искусственную ядерную реакции, получил в свободном состоянии элементарную частицу, заряд которой был равен модулю заряда электрона, а её масса оказалась примерно равной 1 а.е.м. (атомной единице массы). Частицу назвали протоном (позднее оказалась, что она представляет собой ядро изотопа водорода). Протон условились обозначать p или

Некоторое время считали, что ядра состоят только из протонов, но такое представление о ядре противоречили некоторым опытным фактам. В 1932г. Чедвик получил в свободном состоянии элементарную частицу, которая не имела заряда, масса частицы оказалась примерно равной массе протона. Эту частицу назвали нейтрон - . После открытия нейтрона Д.Д. Иваненко и немецкий физик Гейзенберг предложили протонно-нейтронную модель ядра: ядро состоит из протонов и нейтронов. Общее название ядерных частиц – нуклоны. Число протонов Z совпадает с порядковым номером элемента в таблице Менделеева, т.е. число протонов определяет заряд ядра. Сумма протонов Z и нейтронов N равна массовому числу A (массе химического элемента, округленной до целого значения) Z+N=A Протонно-нейтронная модель ядра объяснила существование изотопов. Изотопы- вещества, обладающие одинаковыми химическими свойствами (занимающие одно место в таблице Менделеева), но имеющие разные физические свойства (в основном разную радиоактивность). Изотопы есть у всех химических элементов, у части химических элементов они природные, а у части искусственные, т.е. получаемые в процессе ядерных реакций. Ядра изотопов одного химического элемента имеют одинаковое число протонов и разное число нейтронов.

Например: изотопы водорода - Z=1, N=0 - легкий водород

Z=1, N=1 - дейтерий

Z=1, N=2 - тритий

изотопы урана - Z=92, N =143

Вещества с одинаковыми массовыми числами называются изобарами, например

Ядерные силы – силы, обеспечивающие существование устойчивых ядер, пример сильных взаимодействий. Ядерные силы – силы особой природы. Особенности ядерных сил: 1) ядерные силы являются только силами притяжения; 2) ядерные силы –это короткодействующие силы; 3) ядерные силы обладают свойствами зарядовой независимости; 4) ядерные силы не являются центральными; 5) ядерные силы обладают свойствами насыщения, т.е. в ядре не может быть любого числа нуклонов

Дефект масс. Энергия связи ядер. Энергия связи – энергия необходимая для расщепления ядра на нуклоны без сообщения им кинетической энергии. Она была вычислена на основании формулы взаимосвязи массы и энергии (формулы Эйнштейна) Е=mc 2 .

Е св =Δmс 2 , Δm – дефект масс, Δm=Zm p +Nm n -M я; Zm p – масса протонов, входящих в ядро, Nm n – масса нейтронов, входящих в ядро, M я – масса целого ядра, с – скорость света в вакууме.

Удельная энергия связи Е уд – энергия связи, приходящаяся на один нуклон.

Е уд =Е св / А. Наибольшая энергия связи у химических элементов с массовым числом от 40 до 120. При А>120 удельная энергия связи монотонно убывает. При А< 20 удельная энергия связи имеет характерные максимумы и минимумы. Удельная энергия связи определена для всех химических элементов.

Билет № 9

1. 1. Магнитное поле. Источники магнитного поля. Индукция магнитного поля. Магнитные силовые линии.

  • принцип действия гелий-неонового лазера Принцип действия Гелий-неоновый лазер. Светящийся луч в центре - электрический разряд.

  • Разряд в газе, сохраняющийся после действия внешнего ионизатора, называется самостоятельным.

    1. Тлеющий разряд возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30-50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении 5,3 6,7 кПа возникает разряд в виде святящегося извилистогошнура. При дальнейшемпонижении давления шнур утолщается, и при давлении 13 Па разряд имеет вид, схематически

    изображённый на рис. 5:

    2. Искровой разряд возникает при больших напряжённостях электрического поля в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонкого канала, сложным образом разветвлённого и изогнутого.

    Объяснение искрового разряда даётся на основе стримерной теории , согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизированного газа – стримеров . Стримеры возникают в результате образования электронных лавин посредством ударной ионизации и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие моменты времени устремляются мощные потоки электронов, образующие каналы искрового разряда.

    3. Дуговой разряд . Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непрерывным – возникает дуговой разряд. При этом сила тока резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения минуя стадию искры.

    По современным представлениям, дуговой разряд поддерживается за счёт высокой температуры катода из-за интенсивной термоэлектронной эмиссии, а также термической ионизацией молекул, обусловленной высокой температурой газа.

    4. Коронный разряд – высоковольтный электрический разряд при высоком (например, атмосферном) давлении в резко неоднородном поле вблизи электродов с большой кривизной поверхности. Когда напряжённость поля вблизи острия достигает 30 кВ/см, то вокруг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.

    В зависимости от знака коронирующего разряда различают отрицательную или положительную корону. В случае отрицательной короны рождение электронов, вызывающих ударную ионизацию молекул газа, происходит за счёт эмиссии их из катода под действием положительных ионов, в случае положительной – в следствие ионизации газа вблизи анода.

    Виды газового разряда и их применение. Понятие о плазме.

    Отделение:

    Бухгалтерского учета и права

    Специальность:

    Правоведение

    Группа:

    Составила:

    Евтихевич А. А.

    Преподаватель:

    Орловская Г. В.

    2011 год
    Содержание:

    Страница 1: Газовый разряд

    Применение газового разряда

    Страница 2: Искровой разряд

    Коронный разряд

    Страница 3: Применение коронного разряда

    Страница 4: Дуговой разряд

    Страница 5: Применение дугового разряда

    Тлеющий разряд

    Страница 6-7: Плазма

    Страница 8: Литература

    Га́зовый разря́д - совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Обычно протекание тока становится возможным только после достаточной ионизации газа и образования плазмы. Ионизация происходит за счёт столкновений электронов, ускорившихся в электромагнитном поле, с атомами газа. При этом возникает лавинное увеличение числа заряженных частиц, поскольку в процессе ионизации образуются новые электроны, которые тоже после ускорения начинают участвовать в соударениях с атомами, вызывая их ионизацию. Для возникновения и поддержания газового разряда требуется существование электрического поля, так как плазма может существовать только если электроны приобретают во внешнем поле энергию, достаточную для ионизации атомов, и количество образованных ионов превышает число рекомбинировавших ионов.

    Если для существования газового разряда необходима дополнительная ионизация за счёт внешних источников (например, при помощи ионизирующих излучений), то газовый разряд называется несамостоятельным (такие разряды используются в счётчиках Гейгера).

    Для осуществления газового разряда применяют как постоянные во времени, так и переменные электрические поля.

    В зависимости от условий, при которых происходит образование носителей заряда (давление газа, напряжение, приложенное к электродам, форма и температура электродов), различают несколько типов самостоятельных разрядов: тлеющий, искровой, коронный, дуговой.

    Применения газового разряда

    • Дуговой разряд для сварки и освещения.
    • Сверхвысокочастотный разряд.
    • Тлеющий разряд как источник света в люминесцентных лампах и плазменных экранах.
    • Искровой разряд для зажигания рабочей смеси в двигателях внутреннего сгорания.
    • Коронный разряд для очистки газов от пыли и других загрязнений, для диагностики состояния конструкций.
    • Плазмотроны для резки и сварки.
    • Разряды для накачки лазеров, например гелий-неонового лазера, азотного лазера, эксимерных лазеров и т. д.
    • в счётчике Гейгера,
    • в ионизационных вакуумметрах,
    • в тиратронах,
    • в крайтронах,
    • в гейслеровой трубке.

    Искровой разряд . Присоединим шаровые электроды к батарее конденсаторов и начнем заряжать конденсаторы при помощи электрической машины. По мере заряжения конденсаторов будет увеличиваться разность потенциалов между электродами, а следовательно, будет увеличиваться напряженность поля в газе. Пока напряженность поля невелика, в газе нельзя заметить никаких изменений. Однако при достаточной напряженности поля (около 30000 в/см) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Конденсаторы в этой установке добавлены для того, чтобы сделать искру более мощной и, следовательно, более эффектной.
    Описанная форма газового разряда носит название искрового разряда, или искрового пробоя газа. При наступлении искрового разряда газ внезапно, скачком, утрачивает свои изолирующие свойства и становится хорошим проводником. Напряженность поля, при которой наступает искровой пробой газа, имеет различное значение у разных газов и зависит от их состояния (давления, температуры). При заданном напряжении между электродами напряженность поля тем меньше, чем дальше электроды друг от друга. Поэтому, чем больше расстояние между электродами, тем большее напряжение между ними необходимо для наступления искрового пробоя газа. Это напряжение называется напряжением пробоя. Возникновение пробоя объясняется следующим образом. В газе всегда есть некоторое количество ионов и электронов, возникающих от случайных причин. Обычно, однако, число их настолько мало, что газ практически не проводит электричества. При сравнительно небольших значениях напряженности поля, с какими мы встречаемся при изучении несамостоятельной проводимости газов, соударения ионов, движущихся в электрическом поле, с нейтральными молекулами газа происходят так же, как соударения упругих шаров. При каждом соударении движущаяся частица передает покоящейся часть своей кинетической энергии, и обе частицы после удара разлетаются, но никаких внутренних изменений в них не происходит. Однако при достаточной напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя столкновениями может сделаться достаточной, чтобы ионизировать нейтральную молекулу при столкновении. В результате образуется новый отрицательный электрон и положительно заряженный остаток – ион. Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома, - работой ионизации. Величина работы ионизации зависит от строения атома и поэтому различна для разных газов. Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивают число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, этот процесс «усиливает сам себя», и ионизация в газе быстро достигает очень большой величины. Все явления вполне аналогично снежной лавине в горах, для зарождения которой бывает достаточно ничтожного комка снега. Поэтому и описанный процесс был назван ионной лавиной. Образование ионной лавины и есть процесс искрового пробоя, а то минимальное напряжение, при котором возникает ионная лавина, есть напряжение пробоя. Мы видим, что при искровом пробое причина ионизации газа заключается в разрушении атомов и молекул при соударениях с ионами. Одним из природных представителей искрового разряда является молния – красивая и не безопасная.
    Коронный разряд . Возникновение ионной лавины не всегда приводит к искре, а может вызвать и разряд другого типа – коронный разряд. Натянем на двух высоких изолирующих подставках металлическую проволоку AB диаметром в несколько десятых миллиметра и соединим ее с отрицательным полюсом генератора, дающего напряжение в несколько тысяч вольт, например, хорошей электрической машине. Второй полюс генератора отведем к Земле. Мы получим своеобразный конденсатор, обкладками которого являются наша проволока и стены комнаты, которые, конечно, сообщаются с Землей. Поле в этом конденсаторе весьма неоднородно, и напряженность его очень велика вблизи тонкой проволоки. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение («корона»), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием. Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, соединенным с другим полюсом генератора. Ток в воздухе между проволокой AB и стенами переносится ионами, образовавшимися в воздухе благодаря ударной ионизации. Таким образом, свечение воздуха и появление тока указывают на сильную ионизацию воздуха по действием электрического поля. Коронный разряд может возникнуть не только у проволоки, но и у острия и вообще у всех электродов, возле которых образуется очень сильное неоднородное поле.
    Применение коронного разряда
    1) Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной. Внутри стеклянной трубки содержатся два электрода: металлический цилиндр и висящая по его оси тонка металлическая проволока. Электроды присоединены к электрической машине. Если продувать через трубку струю дыма (или пыли) и привести в действие машину, то, как только напряжение сделается достаточным для образования короны, выходящая струя воздуха станет совершенно чистой и прозрачной, и все твердые и жидкие частицы, содержащиеся в газе, будут осаждаться на электродах.
    Объяснение опыта заключается в следующем. Как только у проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы, соударяясь с частицами пыли, «прилипают» к последним и заряжают их. Так как внутри трубки действует сильное электрическое поле, то заряженные частицы движутся под действием поля к электродам, где и оседают. Описанное явление находит себе в настоящее время техническое применение для очистки промышленных газов в больших объемах от твердых и жидких примесей.
    2) Счетчики элементарных частиц. Коронный разряд лежит в основе действия чрезвычайно важных физических приборов: так называемых счетчиков элементарных частиц (электронов, а также других элементарных частиц, которые образуются при радиоактивных превращениях). Один из типов счетчика (счетчик Гейгера – Мюллера) показан на рис 1.
    Он состоит из небольшого металлического цилиндра A, снабженного окошком, и тонкой металлической проволоки натянутой оп оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник напряжения В в несколько тысяч вольт. Напряжение выбирают таким, чтобы оно было только немного меньше «критического», т. е. Необходимого для зажигания коронного разряда внутри счетчика. При попадании в счетчик быстро движущегося электрона последний ионизует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток.
    Возникающий в счетчике ток настолько слаб, что обычным гальванометром его обнаружить трудно. Однако его можно сделать вполне заметным, если в цепь ввести очень большое сопротивление R и параллельно ему присоединить чувствительный электрометр E. При возникновении в цепи тока I на концах сопротивления создается напряжение U, равное по закону Ома U=IxR. Если выбрать величину сопротивления R очень большой (много миллионов ом), однако значительно меньшей, чем сопротивление самого электрометра, то даже очень слабый ток вызовет заметное напряжение. Поэтому при каждом попадании быстрого электрона внутрь счетчика листочек электрометра будет давать отброс.
    Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частички, способные производить ионизацию газа путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют, поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные частички.
    Дуговой разряд . В 1802 г. В. В. Петров установил, что если присоединить к полюсам большой электролитической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их разделить, то между концами углей образуется яркое пламя, а сами концы углей раскаляются добела. Испуская ослепительный свет (электрическая дуга). Это явление семь лет спустя независимо наблюдал английский химик Дэви, который предложил в честь Вольта назвать эту дугу «вольтовой».
    Обычно осветительная сеть питается током переменного направления. Дуга, однако, горит устойчивее, если через нее пропускают ток постоянного направления, так что один из ее электродов является все время положительным (анод), а другой отрицательным (катод). Между электродами находится столб раскаленного газа, хорошо проводящего электричество. В обычных дугах этот столб испускает значительно меньше света, нежели раскаленные угли. Положительный уголь, имея более высокую температуру, сгорает быстрее отрицательного. Вследствие сильной возгонки угля на нем образуется углубление – положительный кратер, являющийся самой горячей частью электродов. Температура кратера в воздухе при атмосферном давлении доходит до 4000 °C.
    Дуга может гореть и между металлическими электродами (железо, медь и т. д.). При этом электроды плавятся и быстро испаряются, на что расходуется много тепла. Поэтому температура кратера металлического электрода обычно ниже, чем угольного (2000-2500 °C).
    Заставляя гореть дугу между угольными электродами в сжатом газе (около 20 атм), удалось довести температуру положительного кратера до 5900 °C, т. е. до температуры поверхности Солнца. При этом условии наблюдалось плавление угля.
    Еще более высокой температурой обладает столб газов и паров, чрез который идет электрический разряд. Энергичная бомбардировка этих газов и паров электронами и ионами, подгоняемыми электрическим полем дуги, доводит температуру газов в столбе до 6000-7000 °. Поэтому в столбе дуги почти все известные вещества плавятся и обращаются в пар, и делаются возможными многие химические реакции, которые не идут при более низких температурах. Нетрудно, например, расплавить в пламени дуги тугоплавкие фарфоровые палочки.
    Для поддержания дугового разряда нужно небольшое напряжение: дуга хорошо горит при напряжении на ее электродах 40-45 в. Ток в дуге довольно значителен. Так, например, даже в небольшой дуге, идет ток около 5 А, а в больших дугах, употребляющихся в промышленности, ток достигает сотен ампер. Это показывает, что сопротивление дуги невелико; следовательно, и светящийся газовый столб хорошо проводит электрический ток.
    Такая сильная ионизация газа возможна только благодаря тому, что катод дуги испускает очень много электронов, которые своими ударами ионизуют газ в разрядном пространстве. Сильная электронная эмиссия с катода обеспечивается тем, что катод дуги сам накален до очень высокой температуры (от 2200° до 3500°C в зависимости от материала). Когда для зажигания дуги мы в начале приводим угли в соприкосновение, то в месте контакта, обладающем очень большим сопротивление, выделяется почти все джоулево тепло проходящего через угли тока. Поэтому концы углей сильно разогреваются, и этого достаточно для того, чтобы при их раздвижении между ними вспыхнула дуга. В дальнейшем катод дуги поддерживается в накаленном состоянии самим током, проходящие через дугу. Главную роль в этом играет бомбардировка катода падающими на него положительными ионами.
    Применение дугового разряда
    Вследствие высокой температуры электроды дуги испускают ослепительный свет, и поэтому электрическая дуга является одним из лучших источников света. Она потребляет всего около 0,3 ватта на каждую свечу и является значительно более экономичной. Нежели наилучшие лампы накаливания. Электрическая дуга впервые была использована для освещения П. Н. Яблочковым в 1875 г. и получила название «русского света», или «северного света».
    Электрическая дуга также применяется для сварки металлических деталей (дуговая электросварка). В настоящее время электрическую дугу очень широко применяют в промышленных электропечах. В мировой промышленности около 90% инструментальной стали и почти все специальные стали выплавляются в электрических печах.
    Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух выкачивают. Свет ртутной дуги чрезвычайно богат невидимыми ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Ртутные лампы широко применяют при лечении разнообразных болезней («искусственное горное солнце»), а также при научных исследованиях как сильный источник ультрафиолетовых лучей.
    Тлеющий разряд . Кроме искры, короны и дуги, существует еще одна форма самостоятельного разряда в газах – так называемый тлеющий разряд. Для получения этого типа разряда удобно использовать стеклянную трубку длинной около полуметра, содержащую два металлических электрода. Присоединим электроды к источнику постоянного тока с напряжение в несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остается темным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе – малинового цвета, в других газах – других цветов), соединяющий оба электрода. В этом состоянии газовый столб хорошо проводит электричество.
    При дальнейшей откачен светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубке. Различают следующие две части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название темного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба.
    А работает это вот как. При тлеющем разряде газ хорошо проводит электричество, а значит, в газе все время поддерживается сильная ионизация. При этом в отличие от дугового разряда катод все время остается холодным. Почему же в этом случае происходит образование ионов?
    Падение потенциала или напряжения на каждом сантиметре длины газового столба в тлеющем разряде очень различно в разных частях разряда. Получается, что почти все падение потенциала приходится на темное пространство. Разность потенциалов, существующая между катодом и ближайшей к нему границей пространства, называют катодным падением потенциала. Оно измеряется сотнями, а в некоторых случаях и тысячами вольт. Весь разряд оказывается существует за счет этого катодного падения.
    Значение катодного падения заключается в том, что положительные ионы, пробегая эту большую разность потенциалов, приобретают большую скорость. Так как катодное падение сосредоточено в тонком слое газа, то здесь почти не происходит соударений ионов с газовыми атомами, и по этому, проходя через область катодного падения, ионы приобретают очень большую кинетическую энергию. Вследствие этого при соударении с катодом они выбивают из него некоторое количество электронов, которые начинают двигаться к аноду. Проходя через темное пространство, электроны в свою очередь ускоряются катодным падением потенциала и при соударения с газовыми атомами в более удаленной части разряда производят ионизацию ударом. Возникающие при этом положительные ионы опять ускоряются катодным падением и выбивают из катода новые электроны и т. д. Таким образом все повторяется до тех пор пока на электродах есть напряжение.
    Значит мы видим, что причинами ионизации газа в тлеющем разряде являются ударная ионизация и выбивание электронов с катода положительными ионами.
    Такой разряд используют в основном для освещения. Применяется в люминесцентных лампа.

    Словом «плазма» (от греч. «плазма» - «оформленное») в середине XIX в. стали именовать бесцветную часть крови (без красных и белых телец) и жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881-1957) и Леви Тонко (1897-1971) назвали плазмой ионизованный газ в газоразрядной трубке. Английский физик Уильям Крукс (1832-1919), изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии». В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С-в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны - ионизуются и газ превращается в плазму. При температурах более 1 000 000 °С плазма абсолютно ионизована - она состоит только из электронов и положительных ионов. Плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности - это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма. Ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности. Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд). ПЛАЗМА - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. В лабораторных условиях плазма образуется в электрическом разряде в газе, в процессах горения и взрыва. Когда луч лазера сфокусировали линзой, в воздухе в области фокуса вспыхнула искра, и там образовалась плазма. Это вызвало огромный интерес у физиков. Первые затравочные электроны появляются в результате вырывания их из атомов среды после одновременного поглощения нескольких фотонов световой волны. Энергия каждого фотона рубинового лазера равна 1, 78 эВ. Далее свободный электрон, поглощая фотоны, достигает энергии 10 эВ, достаточной для ионизации и рождения нового электрона в процессе столкновения с атомами среды. Разряд может гореть в течение длительного времени и светится ослепительно белым светом, на него невозможно смотреть без тёмных очков. Необычайно высокая температура- уникальное свойство оптического заряда- представляет большие возможности для использования его в качестве источника света. Возможность создания плазменного шнура световым излучением лазера открывает возможности для передачи энергии на расстояние. Носителями заряда в плазме являются электроны и ионы, образовавшиеся в результате ионизации газа. Отношение числа ионизованных атомов к полному их числу в единице объема плазмы называют степенью ионизации плазмы (а). В зависимости от величины а говорят о слабо ионизованной (а - доли процента), частично ионизованной (а - несколько процентов) к полностью ионизованной (а близка к 100%) плазме. Средние кинетические энергии различных типов частиц, составляющих плазму, могут быть разными. Поэтому в общем случае плазму характеризуют не одним значением температуры, а несколькими - различают электронную температуру Те, ионную температуру Тi и температуру нейтральных атомов Та. Плазму с ионной температурой Тi < 105 К называют низкотемпературной, а с Тi > 106 К - высокотемпературной. Высокотемпературная плазма является основным объектом исследования по УТС (управляемому термоядерному синтезу). Низкотемпературная плазма находит применение в газоразрядных источниках света, газовых лазерах, МГД - генераторах и др. Наиболее широко плазма применяется в светотехнике - в газоразрядных лампах, освещающих улицы, и лампах дневного света, используемых в помещениях. А кроме того, в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроны проводимости в металле (ионы, жестко закрепленные в кристаллической решётке, нейтрализуют их заряды), совокупность свободных электронов и подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел Газовую плазму принято разделять на низкотемпературную - до 100 тыс. градусов и высокотемпературную - до 100 млн градусов. Существуют генераторы низкотемпературной плазмы - плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000-10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки - плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе. Плазмотроны применяются и в горно-рудной промышленности, и для резки металлов. Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядер лёгких элементов (в первую очередь изотопов водорода - дейтерия D и трития Т), протекающие при очень высоких температурах (» 108 К и выше) В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии. Искусственная реакция термоядерного синтеза была осуществлена в водородной бомбе.

    Литература

    • Мак-Доналд А. Сверхвысокочастотный пробой в газах. М.: Мир, 1969. 205 с.

    · Владимир Жданов Плазма. Кругосвет.

    · Владимир Жданов Плазма в космосе. Кругосвет

    · Райзер Ю. П. Физика Райзер Ю. П. Физика газового разряда газового разряда







    Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Типы самостоятельного разряда и их техническое применение. Газы в нормальном состоянии являются диэлектриками, так как состоят из электрически нейтральных атомов и молекул и поэтому не проводят электричества. Проводниками могут быть только ионизированные газы, в которых содержатся электроны, положительные и отрицательные ионы. Ионизацией называется процесс отделения электронов от атомов и молекул. Ионизация возникает под действием высоких температур и различных излучений (рентгеновских, радиоактивных, ультрафиолетовых, космических лучей) вследствие столкновения быстрых частиц или атомов с атомами и молекулами газов. Образовавшиеся электроны и ионы делают газ проводником электричества. Протекание тока через газ называется газовым разрядом. Разряды, вызванные действием внешнего ионизатора, называются несамостоятельными газовыми разрядами. Применение: в ионизационных камерах и газовых счетчиках быстрых заряженных частиц. Напряжение, при котором несамостоятельный разряд переходит в самостоятельный, называют напряжением пробоя, а сам процесс – электрическим пробоем газа. Газовый разряд, который продолжается после прекращения действия внешнего ионизатора, называется самостоятельным разрядом, т. к. ионы, необходимые для поддержания высокой электропроводности, создаются самим разрядом в результате внутренних процессов, происходящих в газе.


    Возможны различные процессы ионизации: 1. электронным ударом; 2. термическая ионизация; 3. фотоионизация; Ионизация электронным ударом происходит при столкновении электрона с атомом только в том случае, когда электрон на длине свободного пробега (λ) приобретает кинетическую энергию, достаточную для совершения работы отрыва электрона от атома. Термическая ионизация – процесс возникновения свободных электронов и положительных ионов в результате столкновений при высокой температуре. Ионизация атомов и молекул под действием света называется фотоионизацией. В зависимости от процессов образования ионов в разряде при различных давлениях газа и напряжениях, приложенных к электродам, различают несколько типов самостоятельных разрядов: 1. тлеющий; 2. искровой; 3. коронный; 4. дуговой. Тлеющим называется разряд при низких давлениях. Для разряда характерна большая напряженность электрического поля и соответствующее ей большое падение потенциала вблизи катода. Применение: 1. в ионных и электронных рентгеновских трубках; 2. как источник света в газоразрядных трубках; 3. для катодного распыления металлов; 4. для изготовления высококачественных металлических зеркал; 5. в газовых лазерах.


    Искровой разряд – соединяющий электроды и имеющий вид тонкого изогнутого светящегося канала (стримера) с множеством разветвлений. Возникает при давлениях порядка атмосферного. Примеры: 1. молния. Сила тока от 10 до 105 кА. Напряжение между электродами (облако – Земля) достигает 108 – 109 В. Длительность порядка микросекунды. Длина светящегося канала до 10 км. Диаметр до 4 м. 2. разряд конденсатора; 3. искры при расчесывании волос Коронный разряд наблюдается при давлении близком к атмосферному в сильно неоднородном электрическом поле. Газ светится, образуя «корону», окружающую электрод. Примеры: в естественных условиях коронный разряд возникает под влиянием атмосферного электричества на верхушках деревьев, корабельных мачт (огни святого Эльма). Применение: электрофильтры для очистки промышленных газов от примесей. Коронные разряды являются источниками радиопомех и вредных токов утечки около высоковольтных линий передач (основной источник потерь). Дуговой – разряд, характеризующийся большой силой тока (десятки и сотни ампер) и малой напряженностью поля (несколько десятков вольт) на разрядном промежутке между электродами. Разряд поддерживается за счет термоэлектронной эмиссии с поверхности катода. Применение: 1. электропечи для плавки металла; 2. мощные источники света (прожекторы, проекционные киноаппараты); 3. сварка и резка металлов.

    Вам также будет интересно:

    Механика проекта Тотальная Читка!
    Участники могут приобрести 3 пакета участия : * Месячное участие - минимум 20 конспектов за...
    Рунические формулы на продажу недвижимости
    Скандинавские руны представляют собой магические буквы, обладающие особым смыслом. На их...
    Столичные власти определились с первыми сериями пятиэтажек под снос
    Многосекционный панельный жилой дом с рядовыми и торцевыми секциями. Дома серии 1-515/9...
    Серия 1лг 600. Модификации этой серии. Продажа квартир в «домах-кораблях»
    Использование Жилые дома Высота Крыша около 30-50 метров Верхний этаж около...
    Дополнительная комплектация и услуги
    Пример комплектации угловой кухни для 3-комнатной квартиры 97 серии № 1 1 Описание:...